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Chapter 9
Phytoplankton in Alte Donau: Response 
to Trophic Change from Hypertrophic 
to Mesotrophic Over 22 Years

Katrin Teubner, Wilfried Kabas, and Irene Teubner

Abstract  The long-term phytoplankton study in groundwater-seepage lake Alte 
Donau, a former side-arm of the Danube River in Vienna, covers four main lake 
treatment periods (1–4) from 1993 to 2014. During hypertrophic conditions with 
annual total phosphorus (TP) concentrations of 50–70 μg L−1 and mean summer 
phytoplankton biovolume of 18–24 mm3 L−1 before restoration (1), the filamentous 
cyanobacterium Cylindrospermopsis raciborskii was the main taxon in association 
with Limnothrix redekei. The drastic phosphorus reduction by chemical RIPLOX-
precipitation was repeated twice (2a/b, 1995 and 1996) and resulted in a prompt 
drop of summer phytoplankton to 4.6 mm3 L−1 in 1995 and 1.7 mm3 L−1 in 1996. 
Non-filamentous cyanobacteria contributed here only moderately while relative 
high peak contributions of chlorophytes occurred. After years of re-establishment of 
macrophytes (3), the summer phytoplankton biovolume remained low during the 
period of sustained ‘stable conditions’ (4) with values between 0.5 and 1.5 mm3 L−1. 
In the long-term, phytoplankton was responding to low annual total phosphorus 
(10–11 μg L−1) which finally indicated a mesotrophic state close to oligotrophic 
conditions according to the lake classification scheme. The long-term median of 
chlorophyll-a (chl-a) content was 0.50% of wet weight phytoplankton biomass. As 
the phytoplankton composition shifted from a cyanobacteria dominated assemblage 
to a phytoplankton assemblage that was composed of taxa of various taxonomic 
affiliations, the chl-a content varied considerably. Chl-a content reached its lowest 
median value of 0.19% when cyanobacteria formed blooms contributing 77% to 
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total phytoplankton (period 1) and was highest with 0.83% during the peak develop-
ment of chlorophytes which contributed 18% to total biovolume (period 2b). The 
relationship between phytoplankton chl-a and TP is more robust than between phy-
toplankton biovolume and TP for indicating the lake’s trophic state, although both 
response curves are statistically significant and provide roughly the same main pic-
ture of an ecosystem shift from hypertrophic in 1993 to mesotrophic in 2000 and the 
persistence of mesotrophic conditions for the 15 recent years. Trophic shifts were 
also indicated by the phytoplankton assemblage metric when comparing phyto-
plankton species composition between the lake treatment periods. The main picture 
of seasonal development of phytoplankton taxa and functional phytoplankton 
groups indicated that assemblages either prevailed in winter to spring or summer to 
autumn. Annual phytoplankton development thus seems primarily distinctive 
between the two half-year-cycles, namely the winter-spring and the summer-autumn 
period, rather than between the four seasons. While the seasonal development of 
phytoplankton follows the lake phenology commonly observed in temperate lakes, 
long-term compositional shifts of phytoplankton especially responded to the sus-
tained reduction of TP forced by lake treatment measures in Alte Donau.

Keywords  Oxbow lake · Lake restoration · Lake recover · Lake biomanipulation · 
Riplox · Algae · Cyanobacteria · Cylindrospermopsis raciborskii · Seasonality · 
Trophic classification · Phosphorus · Chlorophyll-a · Chlorophyll:TP · 
Biovolume:TP · Phytoplankton assemblage metric

9.1  �Introduction

Rising awareness of eutrophication and advances in the management of eutrophied 
aquatic systems have been made since the late 1960s. The OECD study (OECD 
1982) in the 1980s and the initiative by the EU Water Framework Directive (2000) 
in the 2000s provided the two milestones in the scientific understanding of the 
mechanisms of eutrophication and consequently launched the search for aquatic 
biota, which indicate the specific reference status of each lake type. Since massive 
phytoplankton growth corresponds most notably to nutrient enrichment in lakes and 
as these primary producers play a key role in the food chain, phytoplankton is a key 
biotic parameter assessing lakes. Among the biotic parameters monitored in the 
oxbow lake Alte Donau, phytoplankton (this chapter) and zooplankton (Chap. 9) 
provide with 22 and 19 years, respectively, the longest records.

Alte Donau is popular for recreation including swimming and fishing (Teubner 
et al. 2015). During the 22-year lake restoration, fish were only removed by angler 
sport. The number of fish catches and fish stocking, however, decreased with years 
of phosphorus reduction towards a lower trophic level (time series of fish see Fig. 
15.1 in Chap. 15, fish biomass versus chl-a in Fig. 20.3 in Chap. 20). During all 
years, both mainly carp and predatory fish were added. In the long term, the local 
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fishery increasingly forced the stocking of predatory fish. Some aspects of both 
bottom-up and top-down control on plankton development are discussed in view of 
main compositional shifts from a cladoceran-rotifer-rich to a copepod-rotifer-rich 
of zooplankton assemblage along the lake management periods in Chap. 11. 
Phytoplankton development in this chapter focuses on the bottom-up control with 
main emphasis on phosphorus. This main nutrient element is commonly known to 
limit phytoplankton growth in freshwaters. Accordingly, the main target of restora-
tion and lake management in Alte Donau was to reduce phosphorus availability for 
phytoplankton growth and aimed at increasing water transparency and thus to 
enhance water quality. The emphasis of phosphorus-resource control on phyto-
plankton is the cause for plotting the trophy classification scheme applying Austrian 
standards ÖNORM M6231 (2001) or using a phytoplankton metric based on an 
Austrian Trophic State Index (see Sect. 9.2.4) in this chapter. The phosphorus-
phytoplankton response also remains relevant when applying functional phyto-
plankton groups (Reynolds et al. 2002; Padisák et al. 2009), as was done for Alte 
Donau, since these groups describe the co-occurrence of algae not only along sea-
sons but also along spatio-temporal gradients of nutrient source availability. 
Freshwater phytoplankton surveys with a focus on eutrophication commonly 
describe the phytoplankton shifts in view of resource-driven control. These studies 
describe a unique phytoplankton signature along a trophic gradient across lakes 
from shallow to deep water bodies (Rojo and Alvarez-Cobelas 1994; Teubner 1996; 
Teubner et al. 1999, 2003a, 2004; Naselli-Flores and Barone 2003; Stefaniak et al. 
2005; Nixdorf and Deneke 1997; Søndergaard et al. 2005), from flushed riverine to 
stratified systems (Krienitz et al. 1996; Teubner 1996; Teubner et al. 1999; Köhler 
et al. 2000) or from tropical to temperate climate zone (Chen et al. 2003; Bouvy 
et al. 2006; Burford et al. 2006, 2016; Liu et al. 2011, 2016; Deng et al. 2016). In all 
these field surveys, the changes in phytoplankton assemblages associated with 
eutrophication or restoration are mainly discussed by species alterations among or 
within four predominant taxonomic affiliations: cyanobacteria, diatoms, golden 
algae and green algae.

The aim of this chapter is to track the impact of lake restoration measures on 
compositional shifts of phytoplankton described for four main lake treatment peri-
ods (1–4) including the chemical phosphorus flocculation and the re-establishment 
of submerged vegetation. We further distinguish two sub-periods 2a and 2b con-
cerning the first and second chemical phosphate precipitation by RIPLOX-treatment 
(Ripl 1976; Donabaum et al. 1999). The comparison of these four main periods by 
other biota is described for zooplankton in Chap. 11 and for macrozoobenthos in 
Chap. 14. Besides the compositional shift of phytoplankton due to phosphorus 
reduction along restoration and management measures in Alte Donau, we analysed 
the general phytoplankton pattern of seasonal cycles and pigment relationships and 
its impact on the assessment by trophic classification.
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9.2  �Methods

9.2.1  �Phytoplankton Sampling During Four Treatment Periods

Alte Donau, a former stretch of the Danube River, is an urban polymictic lake with 
a maximum depth of 7 m and mean depth of 2.5 m (relative depth 0.52 calculated 
according to Kõiv et al. 2011) and a surface area of 1.43 km2. The shallow oxbow 
lake consists of two main impoundments, the south basin (in other chapters of this 
book also called lower basin, ‘Untere Alte Donau’ or UAD) and the north basin 
(also called upper basin, ‘Obere Alte Donau’ or OAD) with their main sampling 
sites ‘AD1’ and ‘AD4’, respectively. According to Löffler (1988) and Mayer et al. 
(1997), the retention time in the 1980s was roughly estimated by about 20 days to a 
few months. With the construction of the impoundment Neue Donau (1970) and a 
hydro power plant in the river Danube (1997) the water level fluctuations markedly 
decreased step by step as the ground water fluxes changed dramatically (Chap. 2, 
Fig. 5.1 in Chap. 5; see also Donabaum et al. 2004). A more detailed calculation for 
the recent years revealed a much longer hydrological retention time fluctuating from 
98 days to about 900 days, with a mean of 365 days for south and 175 days for north 
basin (Chap. 4). The morphology and hydrology of these two basins are further 
described in Chaps. 3 and 4, respectively.

Samples of phytoplankton and chlorophyll-a (chl-a) were taken with a 
5 L-Schindler sampler at 0.2 m depth in the two main impoundments at biweekly 
(to monthly) intervals from April 1993 to December 2014.

Phytoplankton biovolume was estimated from phytoplankton abundance and 
size measurements using the sedimentation technique and light microscopy. 
Biovolume was calculated for individual phytoplankton species according to the 
basic geometric shape of the cell bodies or the aggregation of cells (Rott 1981). 
Different from the 19-year record of zooplankton samples, which were analysed by 
a single person, the microscopical phytoplankton counting over the 22 years was 
conducted by a number of colleagues. The authors of this chapter (K.T., W.K.) con-
tributed to the phytoplankton counting for several years before and during the resto-
ration period. Taxonomic references reported in AlgaeBase [http://www.algaebase.
org; searched on 9 August 2017] were used for determining the phytoplankton taxa.

The 22-year time series covers all periods of the lake treatment described in 
Chap. 5. For this phytoplankton chapter, the periods were slightly modified analo-
gous to zooplankton in Chap. 11. The periods are as follows: 1 – ‘eutrophication’ 
(before April 1995), 2 – ‘restoration including the first RIPLOX-treatment in April 
1995 and the second RIPLOX-treatment in April 1996 (chemical phosphate precipi-
tation see Fig. 5.3 in Chap. 5, further Chap. 6, methods Chap. 11; details in Ripl 
1976; Donabaum et al. 1999) and further restoration measures (April 1995–1999), 
3 – ‘macrophyte re-establishment’ (2000–2006) and 4 – ‘stable conditions’ (2007–
2014). An earlier study comparing the pelagic community in the first and second 
RIPLOX-year revealed different pathways of prompt responses of plankton organ-
isms to phosphorus reduction (Teubner et  al. 2003b). Accordingly, we split the 
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restoration period in two sub-periods, i.e. (2a) April 1995 to March 1996 and (2b) 
April 1996 to 1999.

9.2.2  �Data Treatment and Statistics

Phytoplankton shown separately for the two impoundments is based on the original 
data set (Fig. 9.5). As phytoplankton, chl-a and total phosphorus (TP), however, 
were not consistently sampled at exactly 2-week intervals, we interpolated the 
observations at daily resolution (Livingstone 2003; Sapna et al. 2015) and averaged 
these over 2 weeks, a month, a summer season or a year (Figs. 9.2, 9.3, 9.4 and 9.6, 
9.7, 9.8, 9.9, 9.10, 9.11.). This data treatment is analogous to the data preparation 
for the zooplankton analysis in Chap. 11.

We calculated net change rates of chl-a (kchl-a, hereafter referred to as net 
growth rate of chl-a) at monthly time intervals as:

	
k chl a chl a tchl a     ln ln /t t2 1 

	
(9.1)

where chl-at2 is the chl-a concentration at time t = t2, chl-at1 the chl-a at time t = t1 
and Δt the time span in number of days (e.g. Teubner et al. 2003b). Likewise, we 
analysed the persistence of phytoplankton composition at monthly time intervals 
expressed by the standardised Bray-Curtis similarity index (0–100) using the soft-
ware package PRIMER 5. The higher this index, the higher is the resemblance of 
the phytoplankton composition between successive samples as indicated by species 
or functional phytoplankton groups. The seasonal variability of this Bray-Curtis 
index and of chl-a and biovolume data was estimated using the coefficient of varia-
tion (CV = standard deviation/mean).

Prior to the statistical analysis, we tested data for normal distribution. According 
to the non-parametric Shapiro-test (Dunn and Clark 1974), not all parameters fol-
lowed a normal distribution, in particular not those of single phytoplankton taxa, 
which were rare in at least one lake treatment period. Also, chl-a and biovolume 
data for the whole study period did not follow normal distribution. We conducted 
statistical analyses to identify the differences among sampling sites (AD1, AD4) 
and restoration periods using R (R i386 Version 2.15.2). We applied Kruskal-Wallis 
H-tests to determine differences between annual median values for both impound-
ments and for the five restoration periods (Figs 9.7 and 9.8). To identify homoge-
neous subsets when comparing the phytoplankton assemblages between the two 
impoundments (see text for difference between site in Fig. 9.5) and during the five 
restoration periods, we further conducted pairwise Mann-Whitney U-tests with a 
Bonferroni correction (Figs 9.7 and 9.8). The temporal agreement between chl-a 
and biovolume was assessed using the non-parametric Spearman rank correlation. 
The biovolume of higher ranks of phytoplankton taxa are displayed as notched box-
whisker plots using SYSTAT 10 (SPSS Inc.) (Figs  9.7 and 9.8). The boxes are 
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notched at the median; the length of the notches indicates the 95% confidence 
interval.

9.2.3  �Assessment by Functional Groups

Phytoplankton species were categorised by their co-occurrence during seasonal suc-
cession in similar habitats as ‘functional associations’ according to Reynolds et al. 
(2002) modified by Padisák et al. (2009). We tried to avoid using taxa on genus level 
instead of species level as suggested by Padisák et al. (2009) and further made sure 
that the functional group categories comprise more than one species. For this rea-
son, we allocated Melosira varians C.Agardh to ‘P’ and not as a single species to 
template ‘TB’ as nominated in Padisák et al. (2009). The individual taxa were allo-
cated to 20 functional groups as follows: cyanobacterial Chroococcales and 
Synechococcales of the genera Woronichinia naegeliana (Unger) Elenkin and 
Microcystis aeruginosa f. aeruginosa Kützing, M. viridis (A.Braun) 
Lemmermann, M wesenbergii (Komárek) Komárek ex Komárek (Lm), 
Aphanocapsa and Aphanothece (K), filamentous nitrogen fixing genera of 
Nostocales as Dolichospermum and Aphanizomenon (H1) and Cylindrospermopsis 
(SN) and of non-nitrogen fixing Oscillatoriales as Limnothrix, Planktolyngbya, 
Planktothrix and Pseudanabaena (S1), unicellular centric diatoms (A), pennate dia-
toms as mainly Diatoma and Tabellaria (B) and Asterionella, Navicula and Nitzschia 
(C), Aulacoseira granulata (Ehrenberg) Simonsen, Fragilaria cf. construens, F. 
crotonensis Kitton, Melosira varians C.Agardh (P), cyanobacteria and dinofla-
gellates of the genera Ceratium, Gomphosphaeria, Gymnodinium, Merismopedia, 
Snowella, Woronichinia, and Peridinium (Lo), cryptophytes mainly of the species 
Cryptomonas curvata Ehrenberg C. erosa Ehrenberg, C. marssonii Skuja (Y), 
small-cell taxa of Chlorophyta, Euglenophyta and Charophyta as e.g., Ankyra, 
Carteria, Crucigenia, Elakatothrix, Koliella, Monoraphidium, Schroederia, 
Tetraedron, Tetraselmis, Tetrastrum and Trachelomonas (X1), mainly colonial 
Trebouxiophyceae and Chlorophyceae of the genera Botryococcus, Coelastrum, 
Dictyosphaerium, Lagerheimia, Oocystis, Quadricoccus, Radiococcus and 
Tetrachlorella; Radiocystis (F) and Pediastrum and Scenedesmus (J), large cell bod-
ies or filaments mainly of Charophyta and Chlorophyta as Closterium, Cosmarium, 
Mougeotia, Planktonema, Staurastrum and Zygnema (N), flagellates mainly of 
Ochrophyta and Cryptophytes as Chrysomonas, Ochromonas and Rhodomonas 
(X2) and of other species of Ochrophyta of the genera Dinobryon, Mallomonas and 
Synura (E) and Uroglena and two further groups of lower biovolume (U; names for 
the functional groups are given in brackets and are based on the nomenclature of 
Reynolds et al. (2002) and Padisák et al. (2009)).
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9.2.4  �Assessment of Trophic State by ÖNORM 
and Phytoplankton Assemblage Metric Modified 
from Brettum Index

The assessment of phytoplankton and chl-a along the TP gradient in the water col-
umn follows the lake’s trophic classification recommended by the ÖNORM M6231 
(2001). According to this description of Austrian standards, we display the annual 
concentration of TP versus summer chl-a and summer phytoplankton biovolume, 
respectively. TP ranges are described for five trophic levels from oligotrophic to 
hypertrophic including a sub-category for the eutrophic state with moderately eutro-
phic and highly eutrophic. For chl-a, the sub-categories for the eutrophic state are 
missing in the ÖNORM M6231 (2001) and, therefore, we used an empirical value 
calculated from the chl-a-TP response curve plotted for Alte Donau. Furthermore, 
although rough numbers of phytoplankton biomass for some trophic levels are pro-
vided in the ÖNORM M6231 (2001), we used a more detailed calculation for phy-
toplankton biovolume for describing the five trophic levels. We calculated the class 
limits for phytoplankton biovolume by converting the chl-a thresholds to biovolume 
using a constant ratio that was empirically determined for Alte Donau (median 
value, 0.50% chl-a of wet weight biomass of phytoplankton assuming a density of 
1 mg biomass per 1 mm3 biovolume, 515 observations, details in Fig. 9.9). All num-
bers for the class limits describing the five trophic levels are displayed in Fig. 9.10.

In addition to the trophic states by ÖNORM M6231 (2001), we applied a phyto-
plankton assemblage metric to infer the ecological integrity of Alte Donau without 
referring to the individual species again. The Austrian phytoplankton assemblage 
metric is modified from the Brettum index (Brettum 1989), which was originally 
developed for lakes in Norway and refers to a calibration data set over seven ranks. 
The Austrian metric is based on a multi-year calibration data set of 167 phytoplank-
ton taxa observed in 29 lakes (2429 phytoplankton samples including TP measures, 
Dokulil et al. 2005), which are mainly deep, oligo- to mesotrophic lakes and pre-
dominantly from the pre-alpine and alpine regions in Austria. To cover the full range 
of trophic states as suggested by ÖNORM, ten mainly shallow and eutrophied lakes 
in Germany were included in the data set (data of 8 meso- to hypertrophic lakes 
from Teubner 1996 and of mesotrophic pre-alpine Ammersee from Teubner et al. 
2004; Teubner 2006 in Dokulil et al. 2005). The Austrian phytoplankton assemblage 
metric displays five ranks according to the five states recommended by ÖNORM 
M6231 (2001).

	1.	 oligotrophic
	2.	 mesotrophic
	3.	 moderately eutrophic
	4.	 highly eutrophic
	5.	 hypertrophic
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In the calibration data set, the weighted species scores reflect the frequency dis-
tribution of individual phytoplankton species along these five ranks. The weighting 
among species, which may differ in their biovolume yield by more than one order of 
magnitude, counterbalances the contribution of many less abundant phytoplankton 
species against few highly abundant, blooming species, thus giving a reliable lake 
assessment. The advantage of the Austrian phytoplankton assemblage metric 
described in Dokulil et al. (2005) is that it includes all species observed in a phyto-
plankton sample regardless of the species-specific phosphorus range. Thus, biased 
interpretation using few, a priori selected single indicator species is avoided. 
Assessing an actual phytoplankton lake sample by the Austrian assemblage metric, 
the biovolume of each phytoplankton species is multiplied by its species-specific 
weighted score from the calibration data set. Finally, the scores over all observed 
lake species are summed up and weighted among the five TP ranks. The rank with 
the highest total score indicates the highest probability of the trophic state. 
Phytoplankton assessment methods to identify ecological integrity differ among 
countries and regions as for example recently summarized by Pasztaleniec (2016). 
Habitat scores in general, however, have a long tradition in ecology and are com-
monly retrieved from a meta-analysis of empirical observations of various biotic 
community structure or other phenomena discovered across individual habitats 
(Karr 1998; Hofmann 1993; Moog and Chovanec 2000; Moog 2002; Henderson 
2003; Crossetti and Bicudo 2008, see also chironomid score in Chap. 14). In case of 
phytoplankton, such methods are used to assess lake ecology in accordance with the 
European Framework Directive (e.g., Padisák et al. 2006; Dokulil and Teubner 2006; 
Solimini et al. 2008; Nõges et al. 2009; Poikane et al. 2011; Pasztaleniec 2016).

9.3  �Results

9.3.1  �Phytoplankton Species Composition, Functional Groups 
and Their Seasonal Pattern

Photographs of some cyanobacteria and algae which were observed in Alte Donau 
are shown in Fig. 9.1. These photosynthetic organisms vary in their size from small-
celled pico-plankton as e.g. Aphanocapsa spp. (Fig. 9.1b) to macroscopically visi-
ble, large cells as e.g. Cosmarium botrytis (Fig. 9.1i) or may form large aggregates, 
such as Microcystis aeruginosa, M. flos-aquae, M. novacekii, M. viridis, M. wesen-
bergii (Fig. 9.1a), Uroglena volvox (Fig. 9.1c), Dinobryon divergens (Fig. 9.1d), 
Botryococcus braunii (Fig. 9.1g) and Coenochloris spec. (Fig. 9.1h). In terms of 
taxonomy, common freshwater species of all taxonomic groups were observed with 
the exception of the generally rare freshwater Rhodophyta. Considering the 17 main 
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Fig. 9.1  Phytoplankton species from small-sized picoplankton (b) to large netplankton species 
(e.g., c) in Alte Donau; (a and b) Cyanobacteria, (a) – Microcystis wesenbergii, (b) – Aphanoscapsa 
spec.; (c and d) Ochrophyta, Chysophyceae, c – Uroglena volvox Ehrenberg, (d) – Dinobryon 
divergens O.E.Imhof; (e and f) Bacillariophyta, Bacillariophyceae, (e) – Encyonema triangulum 
(Ehrenberg) Kützing, (f) – Fragilaria spec.; (g and h) Chlorophyta, (g) – Trebouxiophyceae, 
Botryococcus braunii Kützing, (h) – Chlorophyceae, Coenochloris spec., (i and j) Charophyta, 
(i) – Conjugatophyceae, Cosmarium botrytis Meneghini ex Ralfs, (j) – Hyalotheca dissiliens 
Brébisson ex Ralfs, k Euglenophyta, Euglenophyceae, Euglena acus (O.F.Müller) Ehrenberg. 
Scale bar for (a, b, h): 10 μm; for (d, e, g, i, j): 20 μm; for (f, k): 30 μm; for (c): 50 μm
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Fig. 9.2  Seasonal development of 28 phytoplankton taxa as long-term monthly averages from 
1993–2014. Black areas indicate the season with the highest mean seasonal biovolume. The verti-
cal line separates biovolumes of winter-spring from summer-autumn
Abbr: winter (DJF): Astfor  – Asterionella formosa HASSAL, Fracon  – Fragilaria construens 
(EHRENB) GRUNOW, Nitaci – Nitzschia acicularis W.SMITH, Tabflo – Tabellaria flocculosa 
(ROTH) KÜTZ., Navspp  – Navicula spp., Cryero  – Cryptomonas erosa EHRENB., Tetspe  – 
Testraselmis spec, spring (MAM): UniCen-unicellular centric diatoms, Frauln – Fragilaria ulna 
(KÜTZ.) LANGE-BERTALOT, Fracro – Fragilaria crotonensis KITTON, Dindiv – Dinobryon 
divergens O.E.IMHOF, Kollon  – Koliella longiseta (VISCH.) HIND., Rholac  – Rhodomonas 
lacustris PASCHER et RUTTNER, Carpse  – Carteria pseudomultifilis PETERFL L., summer 
(JJA): Cerhir – Ceratium hirundinella (O.F.MÜLLER) DUJARDIN, Micwes – Microcystis wesen-
bergii (KOM.) KOM., Placir – Planktolyngbya circumcreta, Snolac – Snowella lacustris (CHOD.) 
KOM. et HIND., Coeast – Coelastrum astroideum DE-NOT., Coeret – Coelastrum reticulatum 
(DANG.) SENN, Stagra  – Staurastrum gracile RALFS, autumn (SON): Aulspp  – Aulacoseira 
spp., Urovol – Uroglena volvox EHRENBERG, Cylrac – Cylindrospermopsis raciborskii, Plasub – 
Planktolyngbya subtilis (W.WEST) ANAGN.  Et KOM., Psecat  – Pseudanabaena catenata 
LAUTERB., Schrob  – Schroederia robusta KORS., Cloacu  – Closterium acutum (LEMM) W.
KRIEG; Bacill – Bacillariophyta, Crypt – Cryptophyta, Chloro – Chlorophyta, Ochro – Ochrophyta, 
Dino – Dinoflagellata, Cyano – Cyanobacteria, Charo – Charophyta
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functional phytoplankton groups for Alte Donau (see method), five groups refer to 
cyanobacteria, four to chlorophyte and three to diatom taxa.

The monthly development of single species in Alte Donau is given in Fig. 9.2. 
Most species with pronounced development in winter and spring were bacillario-
phytes (diatoms) of Tabellariales, Bacillariales and Fragilariales (needle-shaped 
diatoms, such as e.g., Asterionella formosa, Nitzschia acicularis, Fragilaria con-
struens) and Stephanodiscales (a number of species categorised as unicellular cen-
tric diatoms). Some cryptophytes as Cryptomonas erosa and Rhodomonas lacustris 
and few ochrophytes (e.g. Dinobryon divergens) and chlorophytes (Tetraselmis 
spec. and Carteria pseudomultifilis) also developed their main biovolume in winter 
to spring. Many species, such as e.g., Asterionella formosa, Cryptomonas erosa, 
Rhodomonas lacustris and Tetraselmis spec., established large biovolumes through-
out these both seasons with the main peak or main seasonal average neither in win-
ter or spring. Typical phytoplankton species blooming in summer (Fig. 9.2) were 
cyanobacteria (Microcystis wesenbergii, Planktolyngbya circumcreta), chloro-
phytes (Coelastrum astroideum, C. reticulatum), dinoflagellates (Ceratium hirundi-
nella) and charophytes (Staurastrum gracile) with high biovolumes lasting to 
autumn. Other species with a biovolume peak in autumn reached already had high 
yields in summer (e.g., cyanobacteria Cylindrospermopsis raciborskii, 
Planktolyngbya subtilis). The majority of species developed their main yield either 
in winter and spring or in summer and autumn. Hence, annual phytoplankton devel-
opment seems primarily distinctive between the two half-year-cycles, namely the 
winter-spring and the summer-autumn period, rather than between the four 
seasons.

Analogous to Fig. 9.2., the seasonality of biovolume of four phytoplankton asso-
ciations is shown in Fig. 9.3. As found for single species, functional phytoplankton 
groups built pronounced biovolumes lasting either in winter and spring (functional 
group ‘Y’ with species of Cryptomonas and ‘P’ of mainly pennate diatom species) 
or in summer and autumn (functional group ‘Lo’ with species of cyanobacteria of 
Genera Woronichinia, Snowella, Gomphosphaeria, Merismopedia and dinoflagel-
lates and ‘Lm’ of Cyanobacteria, e.g. the genus Microcystis). The monthly net 
growth rate of chl-a (Fig.  9.4a) and changes of phytoplankton composition 
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(Fig.  9.4b) illustrate the seasonal pattern of phytoplankton development. In the 
long-term average, the net growth rates of chl-a are positive in the first three monthly 
intervals in the year revealing an increase of phytoplankton biovolume. From April 
to May and May to June these net growth rates are slightly negative indicating the 
break down of the spring phytoplankton bloom during the transition from spring to 

Monthly intervals

N
et

 g
ro

w
th

 r
at

es
ch

l-a
 [d

-1
]

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

70

75

80

85

C
V

0.10

0.20

0.30
simil
CV

J-F    F-M   M-A  A-M  M-J   J-J    J-A   A-S   S-O   O-N  N-D   D-J

B
ra

y-
C

ur
tis

 s
im

ila
rit

y 
fo

r 
ph

yt
op

la
nk

to
n 

[%
]

70

75

80

85

C
V

0.04

0.06

0.08

0.10

J-F    F-M   M-A  A-M  M-J   J-J    J-A   A-S   S-O   O-N  N-D   D-J

phyto species

phyto fct groups

A

B

winter           spring               summer              autumn           winter
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summer. According to the long-term lake phenology analysed in Chap. 11, the 
clear-water phase varied between the 95th (early April) and the 145th (late May) 
day in the year (1994–2014, Fig. 11.7). The following strong increase of net growth 
rates of chl-a in June to July stands for a rapidly progressive development of sum-
mer phytoplankton. Later in summer, the net growth rates of chl-a become moderate 
positive and are weakest then successively decreasing to lowest and negative values 
from October to November, i.e. from autumn to winter. With the winter season, net-
growth rates of chl-a increase again. The long-term seasonal change of phytoplank-
ton composition is expressed by the Bray-Curtis similarity between two successive 
monthly samples (Fig. 9.1b). As indicated by the CV, the similarity index varies 
most at particularly low values during the transition from spring to summer (from 
April to May and May to June, respectively), which coincides with low net growth 
rates of chl-a. It corresponds to a most pronounced species shift after the break 
down of spring bloom and a new growth of summer plankton. A second but less 
pronounced shift is found from October to November. Both species shifts during the 
transition from spring to summer and autumn to winter reflect the development in 
winter-spring or summer-autumn for many single species described before in 
Fig.  9.2. This general pattern of seasonal phytoplankton phenology is also seen 
when assessing compositional shifts by biovolume of phytoplankton functional 
groups (Fig. 9.4b).

9.3.2  �Long-Term Development of Taxonomic Phytoplankton 
Groups

Time series of taxonomic groups are shown in Fig. 9.5 for both basins. When com-
paring the phytoplankton development year by year between the south (AD1) and 
the north basin (AD4) (Fig. 9.5), we found statistically higher total biovolumes in 
AD1 only in 2004 (H-test, p < 0.001) and 2010 (H-test, p < 0.05), while higher total 
biovolumes in AD4 occurred in 2011 (H-test, p < 0.005) and 2012 (H-test, p < 0.05). 
The biovolume of chlorophytes never differed between sites and built relatively high 
biovolumes before chemical phosphorus precipitation and modest biovolumes in 
years following the chemical treatment (Fig. 9.5). Analogous, the biovolume of cya-
nobacteria stayed similar between both basins with the exception of 3 years with 
peak biovolumes of more than 40 mm2 L−1 in the eutrophied years 1993 and 1994 
before chemical restoration. Large differences between sites were observed for bac-
illariophytes (H-test; p < 0.05) with statistically higher values in the south basin 
from 2003 to 2010 and statistically lower values in 2011, both during the lake treat-
ment of re-establishment of macrophytes and stable conditions. Bacillariophytes 
reached highest yields of 15 mm3 L−1 in years 1993 and 1994 before the chemical 
phosphorus precipitation. In later years of lake treatment periods, biovolumes did 
not exceed 3 mm3 L−1. Similar to the bacillariophytes, the ochrophytes were signifi-
cantly higher in the south basin from 2004 to 2006 (late years of the macrophyte 
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re-establishment) but higher in the north basin from 2011 to 2013 (during ‘stable 
conditions’). Their biovolume was relatively low and did not exceed 2 mm3 L−1 bio-
volume (Fig. 9.5). Cryptophytes and euglenophytes developed only modest biovol-
umes (Fig. 9.5), but often had statistically significant higher biovolumes in the north 
basin than in the south basin in some years from 2006 onwards. These differences in 
phytoplankton structure, mainly from 2004 onwards only, mirror the spatial patchi-
ness of submerged vegetation but are of minor importance when describing the main 
picture of the long-term response of phytoplankton to lake restoration. For this rea-
son, results in the following graphs are shown as averages for both lake basins of 
Alte Donau summarizing aspects in the water body as a whole.
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The total biovolume as average for both basins was peaking during the eutro-
phied years 1993 and 1993 with peak values more than 50mm3 L−1 before chemical 
precipitation by RIPLOX-treatment was carried out (Fig. 9.6a). Under these nutri-
ent rich conditions, filamentous cyanobacteria contributed up to 98% to phytoplank-
ton (Fig.  9.6b). As described in detail in former studies, Cylindrospermopsis 
raciborskii, a taxon of the Nostocales, was the main cyanobacterium at that time and 
occurred in association with Limnothrix redekei (Dokulil and Mayer 1996; Mayer 
et al. 1997). With various measures of lake treatment, the biovolume contribution of 
cyanobacteria decreased successively but still could contribute remarkable biovol-
umes with peak summer values from 20 to 50% (Fig.  9.6b). The cyanobacterial 
composition, however, changed considerably when RIPLOX-treatment was con-
ducted in 1996 and 1997 and further lake treatment measures were carried out in 
onward years. C. raciborskii almost disappeared and was replaced by various other 
cyanobacterial taxa such as Chrococcales and Synechococcales (genera 
Chroococcus, Gomphosphaeria, Limnothrix, Microcystis, Pseudanabaena, 
Radiocystis, Snowella, Woronichinia). Bacillariophytes and chlorophytes reached 
an intermediate importance in building up phytoplankton biovolume during chemi-
cal restoration (period 2), charophytes during the re-establishment of macrophytes 
(period 3). Ochrophytes and cryptophytes contributed most to biovolume during 
re-establishment of macrophytes and stable conditions (period 3 and 4).

9.3.3  �Comparison of Phytoplankton Composition and Chl-a 
Content Between the Five Lake Treatment Periods

Besides the time series of the 22-year phytoplankton development, the box-plots in 
Fig. 9.7 depict the distribution pattern of total biovolume and the chl-a concentra-
tion during the five periods of lake management (1, 2a & b, 3 and 4). For reference 
of the trophic situation, the total phosphorus is displayed in this figure accordingly. 
With the first chemical phosphorus precipitation in the RIPLOX-treatment year 
1995, the average concentration during the eutrophied period (1, Fig. 9.7) dropped 
to less than a half for TP (45% mean, 38% median), to about 20% for chl-a and to 
about 15% for phytoplankton biovolume. This drastic reduction of phosphorus 
availability for phytoplankton growth led to statistically significant differences in 
the median value between the treatment periods (Fig. 9.7 Kruskal-Wallis test, a: 
H = 305.15, df = 4, p < 0.001, b: H = 149.78, df = 4, p < 0.001, c: H = 143.38, df = 4, 
p < 0.001) with a significant reduction of all three parameters from period 1 (sub-
group ‘a’) to 2a. The subsequent decrease of TP seems to be very closely associated 
with chl-a as both these parameters follow almost the same statistically relevant 
allocation of subgroups displayed by boxes, namely a less distinct phase in the first 
RIPLOX-year followed by a slight recovery of the trophic level from the first to the 
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second RIPLOX-year and a further reduction during the re-establishment of macro-
phytes (period 3, subgroup ‘c’) and the period of stable conditions (period 4, sub-
group ‘d’). Different to chl-a, the biovolume decreased gradually as subgroups were 
statistically less distinctive during periods 2a to 4. The response of single phyto-
plankton groups to lowered TP is described in more detail for phytoplankton chl-a 
and biovolume in Figs 9.8 and 9.9.

Analogous to the time series in Fig. 9.6, the compositional changes of phyto-
plankton can be described by shifted proportions among taxa of various taxonomic 
affiliations (Fig. 9.8). The distribution pattern of chlorophyll content (Fig. 9.8a) and 
phytoplankton groups (Fig. 9.8b–h) is displayed for the five lake treatment periods. 
The most significant compositional change is caused by the reduction of cyanobac-
teria (Fig. 9.8b). The eutrophied period 1 (‘subgroup a’) does not overlap with later 
lake treatment periods. After a strong reduction in the first RIPLOX-treatment 
(period 2a), the biovolume contribution of cyanobacteria slightly increased in the 
second RIPLOX-treatment (period 2b) before decreasing in onward periods showing 
the lowest contribution in the period of stable conditions (period 4, subgroup ‘c). An 
almost opposite pattern is found for ochrophytes and cryptophytes (Fig. 9.8c, d). A 
prompt increase of their relative biovolume contribution was observed in the period 
of the first RIPLOX-year of phosphorus precipitation (period 2a) followed by a 
slight decrease during the second RIPLOX-treatment and a subsequent increase in 
phytoplankton biovolume in periods of macrophyte re-establishment (period 3) and 
stable conditions (period 4). The biovolume contribution of chlorophytes and bacil-
lariophytes (Fig. 9.8e, f) revealed an intermediate increase during both RIPLOX-

Fig. 9.7  Box-whisker plots of (a) TP concentration (in μmol L−1 and μg L−1), (b) phytoplankton 
biovolume (mm3 L−1) and (c) chl-a concentration (μg L−1) during the five treatment periods. All 
data are averages of AD1 and AD4. Statistically significant differences between homogeneous data 
subsets are represented by letters above each box as determined by pairwise Mann-Whitney U tests 
with Bonferroni correction. 2a, 2b, 3 and 4 indicate the treatment periods as in Fig.  9.6 (see 
methods)
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years, but a successive decline in onward periods. The contribution of charophytes 
and dinoflagellates (Fig. 9.8g, h) remained low during all five periods. Charophytes 
reached their highest relative biovolume in the period of macrophyte re-establish-
ment. For dinoflagellates, no significant differences between the treatment periods 
were observed (Kruskal-Wallis test, H = 9.18, df = 4, p = 0.057). The chl-a content 
of total phytoplankton (Fig.  9.7a) varied also among lake treatment periods. Its 
median value was lowest with 0.19% (mean 0.20%) for period 1 when cyanobacte-
ria were mainly contributing to total phytoplankton (median 77%, mean 64%). The 
chl-a content is highest for period 2b (median 0.83%, mean 0.84%) and coincides 
with a high contribution of chlorophytes during period 2b (median 18%, mean 21%) 
and a large contribution of bacillariophytes (median 33%, mean 35%) while the 
contribution of cyanobacteria was moderate (median 16%, mean 21%).

When looking at biweekly data over the whole study period, phytoplankton chl-a 
concentration and biovolume shows a high temporal agreement (Spearman rank, 
r = 0.85 with p < 0.01; Fig. 9.9). The range of variation, however, is different for 
both parameters. With a CV of 1.5 for phytoplankton chl-a but of 2.4 for phyto-
plankton biovolume, the chl-a values are less variable than those of phytoplankton 
biovolume estimating the biweekly phytoplankton yields. The median percentage of 
chl-a is 0.50% of wet weight phytoplankton biomass (see methods). All data points 
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describing the eutrophied period before the first chemical phosphate precipitation in 
April 1995 are below the 0.50% line while most data points of period 2b are above 
this value.

9.3.4  �Assessment of Trophic State and Phytoplankton Habitat 
Score Index

The trophic classification according to Austrian standards is described by the rela-
tionship of summer phytoplankton chl-a concentration (Fig. 9.10a) or summer phy-
toplankton biovolume (Fig. 9.10b) versus annual TP concentration. As shown by 
22 years passing five lake treatment periods, Alte Donau went through an ecosystem 
shift from hypertrophic to mesotrophic, and finally reached a relative poor nutrient 
status close to oligotrophic under ‘stable conditions’. This main picture is observed 
regardless of assessing chl-a or phytoplankton biovolume versus TP. The equivalent 
assessment by chl-a and biovolume, however, is not valid throughout all five lake 
treatment periods. Large differences in the assessment of lake nutrient status by 
chl-a or biovolume were found for period 1 and 2b. During years before chemical 
restoration (period 1, 1993 and 1994), summer chl-a values and annual TP concen-
trations indicate a hypertrophic situation (Fig. 9.10a). The values of chl-a and TP 
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Fig. 9.9  Relationship between phytoplankton chl-a concentration and phytoplankton biovolume, 
both displayed on a logarithmic scale (LOG10). The solid line indicates 0.50% chlorophyll of phy-
toplankton biomass wet weight (median of biweekly averages of AD1 and AD4 over 22 years, see 
methods); Spearman rank correlation, r = 0.85, p < 0.001, n = 513; 1, 2a, 2b, 3 and 4 indicate the 
lake treatment periods as in Fig. 9.6
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are both close to the limit between hypertrophic and highly eutrophic. When assess-
ing the trophic classification by summer phytoplankton biovolume and annual TP 
concentration, the biovolume exceeds the class limit of biovolume towards hyper-
trophic conditions much more than those of TP (Fig. 9.10b). In addition, trophic 
class assignment differs for the period with repeated RIPLOX-treatment and fol-
lowing years of restoration (period 2b), i.e. summer chl-a still demonstrates a mod-
erately eutrophic level while summer biovolume already indicates a mesotrophic 
level. According to the compositional shifts of phytoplankton, the chl-a content 
changed during the treatment periods as described for Figs. 9.8 and 9.9. The pre-
dominance of cyanobacteria during hypertrophic summer phytoplankton develop-
ment was associated with a relatively low chl-a content per phytoplankton biomass. 
In turn, the chl-a content in period 2b was particularly high when the contribution 
of cyanobacteria was low but that of chlorophytes considerably high. Comparing 
the trophic classification scheme of Fig. 9.10a, b, double logarithmic scaled data 
points for chl-a versus TP follow a linear relation more closely (Spearman rank, 
r = 0.86 with p < 0.01; Fig. 9.10a) than those of biovolume versus TP (Spearman 
rank, r = 0.51 with p < 0.05; Fig. 9.10b).

The trophic classification assessed by the Austrian phytoplankton assemblage 
metric are displayed for the five lake treatment periods separately Fig. 9.11. The 
bars mirror the distribution pattern of species in assemblages occurring from oligo- 
to hypertrophic. The black bars indicate the most probable trophic classification 
during each lake treatment period. According to this metric, Alte Donau shifts from 
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hypertrophic to mesotrophic along the five lake treatment periods which is in agree-
ment with the main picture of the trophic classification shown in Fig. 9.10. With the 
first RIPLOX-treatment, the metric indicates the pronounced step by prompt species 
response from an assemblage typically found in hypertrophic lakes (mainly built up 
by the cyanobacterium Cylindrospermopsis raciborskii) to an assemblage shared by 
species of various taxonomic affiliations commonly found in moderately eutrophic 
environments. This result thus mirrors the drastic change indicated by the relation-
ship of chl-a versus TP more closely than by phytoplankton biovolume versus 
TP. According to this metric, the second RIPLOX treatment and the measures dur-
ing this period 2b manifest this species composition of a moderately eutrophic lake. 
With period 3 and 4 more species are referring to a mesotrophic reference, which is 
mainly due to cyanobacteria taxa other than C. raciborskii and a further mixture of 
species allocated to the ochrophytes and cryptophytes (see results for Fig.  9.8 
before) commonly observed in mesotrophic lakes.
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Fig. 9.11  Phytoplankton 
habitat quality index for 
the five lake treatment 
periods. The phytoplankton 
assemblage metric refers to 
five trophic states: 
1-oligotrophic 
(TP < 10 μg L−1), 
2-mesotrophic (TP 
10–20 μg L−1), 
3-moderately eutrophic 
(TP 20–40 μg L−1), 
4-highly eutrophic (TP 
40–60 μg L−1), and 
5-hypertrophic state (TP 
>60 μg L−1), The black bar 
indicates the highest 
probability of trophic state; 
1, 2a, 2b, 3 and 4 indicate 
the lake treatment periods 
as in Fig. 9.6 (see methods)
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9.4  �Discussion

Total biovolume of phytoplankton did not significantly differ for the two impound-
ments with the exception of 4 years in the 22-year time series. The similar phyto-
plankton development in the two impoundments is found despite the large spatial 
heterogeneity of the banks and basins of the former Danube river branch (Table 3.1 
and Fig. 3.1 in Chap. 3; see also Chaps. 18 and 19). For example, macrophyte stand-
ing crop was about 30% lower in the south basin than in the north basin during the 
period from 2005 to 2008, while it was 20% higher in the south basin from 2009 to 
2012; in onward years the distribution was more even (Karin Pall, pers. comm.). In 
addition, annual phosphorus loading was more than twice as high in the south than 
in the north basin in the recent years 2008–2014 (Fig. 6.6 in Chap. 6) which is asso-
ciated with a longer retention time (Chap. 3). The even distribution of total phyto-
plankton in both basins, however, is in line with the strong consistency of zooplankton 
(Chap. 11) and ciliate biomass (Chap. 12) in both impoundments. When looking at 
particular taxonomic affiliations of phytoplankton, such as bacillariophytes, ochro-
phytes, cryptophytes and euglenophytes, no statistically significant differences were 
found before 2002, i.e. the 10 years before underwater vegetation was re-established. 
In onward years, a frequent alternation of low and high biovolume of different taxo-
nomic affiliations was observed for the two impoundments which arose from the 
strong re-growth of underwater vegetation (mainly built of Myriophyllum spicatum, 
Fig. 8.9 and Table 8.2 in Chap. 8, Fig. 20.5 in Chap. 20). During that period under-
water vegetation strongly increased from a very low biomass in 2002 to a 6-fold 
higher yield of 125 t dry mass in 2003 and then remained stable at about 300–500 t 
dry weight (see time series of macrophyte development Figs. 8.7 and 8.11 in Chap. 
8). As total phytoplankton biovolume did not significantly differ in years with mas-
sive underwater vegetation yield, it can be assumed that biovolume among taxa of 
different taxonomic affiliations was counterbalanced as e.g. statistically higher bio-
volumes were found for bacillariophytes in the north basin and for cryptophytes in 
the south basin. This might display the substitution of benthic-pelagic species ver-
sus exclusively pelagic species, as many bacillariophytes are benthic species and 
might have been additionally found as phytoplankton in water column samples near 
patchy underwater vegetation, while areas with less underwater vegetation might 
have stimulated the growth of exclusively planktonic species, such as e.g. the cryp-
tophytes. The shift of mainly tychoplanktonic pennate diatoms towards mainly 
planktonic solitary centric diatoms and the further shift towards e.g. cryptophytes is 
commonly described for ecosystems along the transition from lentic to lotic habitats 
in association with modified light and nutrient exposure (e.g., Bahnwart et al. 1998; 
Nicklisch 1998; Nicklisch et al. 2007; Centis et al. 2010; Wu et al. 2010; Zohary 
et  al. 2010; Naselli-Flores and Barone 2011; Abonyi et  al. 2012; Shatwell et  al. 
2012).

The species composition of the phytoplankton community found in Alte Donau 
is similar to that found in the river-floodplain system of the River Danube (e.g., Kiss 
1987; Schmidt 1994; Schagerl and Riedler 2000; Mihaljević et al. 2010; Dokulil 
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and Donabaum 2014). All species reported for Alte Donau were further common in 
shallow lakes as, e.g., documented for North Germany by Täuscher (2014).

9.4.1  �The Success of Filamentous Cyanobacteria 
Cylindrospermopsis raciborskii in the Nutrient Rich 
Oxbow Lake

The awareness of the unhealthy state of the ecosystem Alte Donau increased with 
the ongoing eutrophication in 1993 and 1994, when progressive turbidity of the 
water body was mirrored by a Secchi depth of approximately 0.5–1.5 m which was 
caused by cyanobacterial blooming (Chap. 6, see also Mayer et al. 1997; Donabaum 
et al. 1999; Dokulil and Teubner 2003). Effective lake restoration and management 
measures were deemed necessary in this urban lake when realising that the main 
planktonic cyanobacterium was Cylindrospermopsis raciborskii since strains of this 
cyanobacterium can potentially produce several cyanobacterial toxins, saxitoxins 
and cylindrospermopsin (e.g., Fastner et al. 2003, 2007; Kurmayer and Christiansen 
2009). During the mass development in Alte Donau, however, no evidence of such 
substances was recorded by symptoms of bathing people, which confirms other field 
studies of non-toxic strains building up C. raciborskii blooms (Alster et al. 2010). 
Although no measurements of toxins were carried out in Alte Donau and hence no 
chemical information is available on the presence of toxins attributed to strains of 
C. raciborskii, it can be assumed that such toxic substances were not a major issue 
in this popular bathing lake in 1993 and 1994 even though being aware of the scien-
tific challenge in predicting toxic cyanobacterial blooms (e.g. Bukowska et  al. 
2017). This cyanobacterium was originally commonly observed in the subtropical 
and tropical region (e.g., Bouvy et al. 2006; Figueredo and Giani 2009). It is now 
more increasingly found as an invasive species in the temperate zone and often seen 
to be growth stimulated by global warming in nutrient rich shallow lakes (Dokulil 
and Mayer 1996; Padisák 1997; Isvánovics et al. 2000; Mischke 2003; Nixdorf et al. 
2003; Stüken et al. 2006; Fastner et al. 2007; Kling 2009; Kaštovský et al. 2010; 
Aubriot and Bonilla 2012; Bonilla et al. 2012; Paerl and Otten 2013; Burford et al. 
2016; Dokulil 2016; Kokociński et al. 2017). C. raciborskii belongs to the Nostocales 
among the Cyanobacteria which are known to be able to fix N2 in heterocytes during 
periods of nitrogen limitation (e.g. see trait description for this taxon in the phyto-
plankton functional group by Mantzouki et al. 2016). N2-fixation by nostocale cya-
nobacteria, however, is not necessarily a dogma for acquiring nitrogen, even if 
among vegetative cells also heterocytes are grown by these prokaryotic species 
(Teubner 1996; Teubner et al. 1999). The preferred and hence more likely sources 
for utilising nitrogen are ammonium and further nitrate if these N-fractions are 
available for cyanobacteria (e.g., Dudel and Kohl 1991; Burford et al. 2006). The 
cyanobacterial filaments of C. raciborskii were the most important for building up 
phytoplankton in 1993 and 1994 when total biovolume yielded a summer maximum 
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of more than 50  mm3  L−1 (original description in Dokulil and Mayer 1996 and 
Mayer et al. 1997, reinforced analysis of this dataset in Dokulil 2016). C. racibor-
skii developed highest biovolumes at a water surface temperature of 21.4 °C under 
well-mixed, hypertrophic conditions in the polymictic Alte Donau (Dokulil and 
Teubner 2000; hydrological retention time and hydrological aspects including the 
ground-water flow attributed to the oxbow and groundwater-seepage lake see meth-
ods and Chaps. 3 and 4). Nixdorf and Deneke (1997) compared a variety of eutro-
phied lakes in North Germany with deep stratified and shallow well mixed water 
columns during summer and stated that at least ‘very shallow’ lakes were the most 
efficient systems in utilising phosphorus due to the favourable proportion between 
euphotic depth and mixing depth. An example for this category is Lebbiner See with 
a maximum depth of 4 m, a contribution of summer cyanobacteria by more than 
90% to total biovolume, an occurrence of C. raciborskii among other filamentous 
cyanobacteria, and a summer chlorophyll peak value of 71 μg L−1, indicating three 
aspects of a phytoplankton situation that is comparable to the condition of Alte 
Donau before restoration. According to a field survey in The Netherlands referring 
to more than 400 ‘lake years’ from 80 lakes, which were mainly shallow and eutro-
phied, cyanobacteria contributed with 46% the most to phytoplankton (Schreurs 
1992). Schreurs emphasized that the comparison of annual yields in ‘Oscillatoria‘, 
‘Aphanizomenon‘ and ‘Microcystis‘-dominated lakes shows that the highest con-
centrations of chlorophyll-a occurred in the ‘Oscillatoria lakes‘ with a long-lasting 
dominance especially of e.g. Planktothrix agardhii. The success of building up an 
extremely high phytoplankton yield in ‘typical‘ Oscillatoria- years could be verified 
by the flushed riverine lake ‘Langer See’ in the early 1990s in Germany (Teubner 
1996; Teubner et  al. 1999), which built up blooms with solitary filaments of 
Planktothrix agardhii in association with solitary filaments of Limnothrix redekei as 
opposed to alternatively blooming associations forming scum mainly composed of 
two colonial forms of cyanobacteria, Aphanizomenon flos-aquae (bundles of fila-
ments) and Microcystis spp. (coccal cell aggregates). In Alte Donau, the massive 
bloom of C. raciborskii was associated with L. redekei (Dokulil and Mayer 1996; 
Mayer et  al. 1997; Dokulil 2016), which would support the finding by Schreurs 
(1992) that in particular solitary filaments of cyanobacteria are successfully build-
ing up high yields in nutrient-rich shallow lakes.

One aspect in describing the successful development of cyanobacteria in a highly 
fluctuating environment in terms of light and nutrient availability is analysing the 
maximum growth rate for optimal growth in comparison to modulated nutrient and 
light conditions. Such experiments under different light and nutrient exposure are 
aimed at mimicking a regime of a turbulent turbid water column and could show 
that cyanobacteria forming solitary filaments (Nicklisch 1998; Nicklisch and Fietz 
2001; Nicklisch et al. 2007; Shatwell et al. 2012; Deng et al. 2016) can cope well 
with continuous or fluctuating light and nutrient availability. Lab experiments and 
field assays specifically with Cylindrospermopsis raciborskii underpin the finding 
on the successful growth in well mixed turbid environments for this solitary fila-
mentous cyanobacterium (Isvánovics et al. 2000; Aubriot and Bonilla 2012; Bonilla 
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et al. 2012; Amaral et al. 2014; Dokulil 2016). Other aspects for prosperous devel-
opment of cyanobacteria in general or of C. raciborskii in the specific case indicated 
by long-lasting blooms in particular in summer are a higher temperature optimum 
for growth (Nicklisch et al. 2007; Joehnk et al. 2008; Kokociński et al. 2017), a 
highly adaptive strategy of phosphorus acquisition even of ephemeral nutrient-
source patches (e.g., Falkner and Falkner 2003; Aubriot and Bonilla 2012; Amaral 
et al. 2014) and storage behaviour (e.g. Isvánovics et al. 2000).

As maximization of phosphorus uptake is a function of cell surface (in addition 
to enzyme activity and related capacity of transport incorporating phosphorus, see 
e.g. Finkel et al. 2009), the long thin filaments of solitary trichoms, as e.g. found for 
Cylindrospermopsis raciborskii and Limnothrix redekei (their filament diameter is 
only 1.8–2.4 μm and 3.05–3.8 μm, respectively; unpublished data Teubner), might 
provide a further aspect of ecological relevance mirrored by field studies. Comparing 
surface to volume ratios of species of various taxonomic affiliations in meso- to 
hypertrophic lakes, the Oscillatoriales together with filaments of Synechococcales 
(former Oscillatoriales) represent the second highest surface to volume ratios 
(median 1507 mm2 L−1 per mm3 L−1, n = 259), while those of filamentous Ulotrichales 
were much higher (4071 mm2 L−1 per mm3 L−1, n = 126) and of pennate diatoms 
slightly lower (1374  mm2  L−1 per mm3  L−1, n  =  357, dimensions measured by 
Interference reflection microscopy, data from Fig. 23  in Teubner 1996; empirical 
measures of surface and volume for algae of various taxonomic affiliations see also 
Morabito et al. 2007).

During the ecosystem shift from the hypertrophic to mesotrophic, the relative 
contribution of cyanobacteria to total biovolume in summer remained relatively 
high with about 20% although the TP concentration and total phytoplankton dropped 
drastically. A closer look at the species shift within the cyanobacteria, however, 
reveals that cyanobacteria, such as blooming Cylindrospermopsis raciborskii disap-
peared while other cyanobacteria such as Microcystis, Aphanocapsa taxa became 
typical cyanobacterial summer taxa even in the period of ‘stable conditions’ (period 
4). Many cyanobacteria found in period 4, however, were already documented for 
mesotrophic conditions in 1986 and 1987. In a multi-site phytoplankton field survey 
during that time, Donabaum (1988) reported cyanobacterial taxa (Chroococcales 
and Synechococcales) such as Microcystis aeruginosa, M. flos-aquae and 
Planktolyngbya limnetica in addition to ochrophyte and charophyte taxa (Uroglena 
spp., Closterium aciculare T.West).

The growth of cyanobacteria is described for a variety of ecotypes from oligo- to 
hypertrophic and occurs under particular underwater light climate at surface water 
or deep metalimnetic layers from mixed to stratified water columns, from shallow 
to deep lakes, from lakes of the tropical and subtropical to the temperate zone (e.g., 
Jewson 1977; Schreurs 1992; Mur et al. 1993; Dokulil and Teubner 2000; Teubner 
et al. 2004; Teubner 2006; Paerl and Otten 2013; Qin et al. 2013). The maximum of 
about 20% peak contribution of cyanobacteria in summer is thus not critical for our 
conclusion of successful restoration in mesotrophic Alte Donau as (1) cyanobacte-
rial taxa mirror a high ecological plasticity and (2) their portion in phytoplankton is 
in the same range as for diatoms and green algae, while only those for cryptophytes 
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and ochrophytes are a bit higher. The success of restoration in view of phytoplank-
ton composition thus might be seen in the balanced mixture of taxa of many taxo-
nomic affiliations (e.g. Bouvy et al. 2006) and points in the direction of enhanced 
biotic diversity and richness stabilising a healthy ecosystem (e.g., Costanza and 
Mageau 1999; Dokulil and Teubner 2010). This is also in agreement with the phy-
toplankton assemblage metric applied for Alte Donau (Dokulil et al. 2005), which 
indicates a shift from phytoplankton taxa commonly found in hypertrophic lakes 
observed before restoration to taxa commonly occurring in mesotrophic lakes 
described for the ‘stable’ condition of the restored Alte Donau. This result verifies 
that phytoplankton assemblage metrics are useful tools for analysing the trophic 
status of lakes and rivers, which is often used to assess the ecological status of an 
aquatic ecosystem (e.g., Dokulil et al. 2005; Dokulil and Teubner 2006; Padisák 
et al. 2006; Lepistö et al. 2006; Crossetti and Bicudo 2008; Solimini et al. 2008; 
Nõges et al. 2009, 2010; Marchetto et al. 2009; Rimet et al. 2009; Poikane et al. 
2011; Napiórkowska-Krzebietke et al. 2012; Katsiapi et al. 2016; Lobo et al. 2016; 
Pasztaleniec 2016; Vadrucci et al. 2017).

9.4.2  �The Seasonal Pattern of Phytoplankton Development

The bloom of Cylindrospermopsis raciborskii and Limnothrix redekei is not only 
observed for summer periods (it is commonly agreed that cyanobacteria are typi-
cally blooming during the hot season; e.g., Dokulil and Teubner 2000; Cao et al. 
2008; Liu et al. 2011; Paerl and Otten 2013), but is lasting also until autumn (Dokulil 
and Mayer 1996; Mayer et al. 1997; Dokulil 2016). Such a ‘warm assemblage’ last-
ing during summer and autumn (Komárková et al. 2003) is dedicated to the growing 
season established after spring overturn and lasting to autumnal mixing and are 
commonly studied when describing phytoplankton succession. The importance of 
‘cold assemblages’ lasting from winter to spring (Komárková et al. 2003) became 
more relevant in recent years with increasing awareness of over-wintering phyto-
plankton (e.g., Rodhe 1955; Adrian et al. 1999; Weyhenmeyer et al. 1999; Teubner 
2000; Morabito et  al. 2002; Barone and Naselli-Flores 2003; Naselli-Flores and 
Barone 2003; Anneville et al. 2005; Dokulil and Herzig 2009; Hampton et al. 2017). 
It’s impact on vernal bloom is most relevant for lake assessment and climate 
research. This pattern of main compositional shifts that occur only twice a year, i.e. 
first during the transition from spring to summer establishing a ‘warm assemblage’ 
lasting from summer to autumn, and secondly during the transition from autumn to 
winter building up a ‘cold assemblage’ lasting from winter to spring, was also found 
in Alte Donau and verifies earlier studies from shallow to deep lakes (using dis-
criminant function analysis in Teubner 2000 and Bray-Curtis similarity in Teubner 
et al. 2003a). This seasonal pattern is a cornerstone of understanding phytoplankton 
development in view of lake phenology in the temperate climate zone, whether in 
view of the succession of phytoplankton species (e.g. plankton groups ecology by 
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Sommer et al. 1986, 2012; De Senerpont Domis et al. 2013) or the description of 
seasonally co-occurring taxa of various affiliations by functional groups (e.g., 
Reynolds et al. 2002; Padisák et al. 2009; Crossetti and Bicudo 2008; Nõges et al. 
2010; Vadrucci et al. 2017). The transition from spring to summer, i.e. ‘clear-water 
phase’, is a key parameter when studying lake phenology (Sommer et al. 1986; De 
Senerpont Domis et al. 2013). In Alte Donau this short period of increased water 
transparency occurred from early April to late May (Chap. 11) stimulating the ver-
nal growth of submerged plants (see Sect. 8.3.1 in Chap. 8) which is most important 
for the recovery of aquatic vegetation (e.g. Scheffer et al. 2001; Wu et al. 2014). The 
timing of the clear-water phase is in accordance with phenology for other shallow 
polymictic lakes (Teubner et al. 1999; Straile and Adrian 2000; Huber et al. 2010; 
Shatwell et  al. 2008) and different from an often later timing for deeper lakes 
(Müller-Navarra et al. 1997; Winder and Schindler 2004; Straile 2002). The trend 
analysis revealed a time shift by about 11 days advance per decade and is associated 
with climate change (details in Sect. 11.3.5 of Chap. 11). According to our analysis, 
the phenology of the vernal clear-water phase can be described for two distinct 
periods with regard to the phosphorus decline, i.e. a more pronounced shift of 
33 days per decade earlier during the rapid decline of TP from 1994–1999 (period 1 
and 2) and a shift of only 7 days earlier per decade for years of moderately low TP 
(period 3 and 4). According to empirical analysis including lakes with long-term 
external reduction of phosphorus loading, the phenology of the vernal clear-water 
phase should be interpreted with caution as time-shifts cannot be attributed to cli-
mate change only but are a result of the interplay of climate forcing and trophic 
changes in the ecosystem (e.g. Jeppesen et al. 2003).

9.4.3  �The Success of Restoration in Terms of Controlling 
Phytoplankton Yield, Assessed by Chl-a And Biovolume

During the late 1980s large water level fluctuations in Alte Donau (Fig. 5 in Chap. 
5, see further Chap. 6, Donabaum et al. 2004) were associated with a considerable 
nutrient input from contaminated groundwater and sewage. During this period, high 
nutrient concentrations were observed in the Danube River (TP 238 μg L−1, total 
nitrogen 2.53 mg L−1) which is in the close vicinity of Neue Donau and Alte Donau 
(Dokulil and Janauer 1990). The small lake surface, the low ‘relative depth’ and 
large inputs of contaminated groundwater characterize Alte Donau as groundwater-
seepage fed ecosystem acting similar to those of riverine lakes as highly productive 
lakes under hypertrophic conditions (Teubner 1996; Teubner et  al. 1999). Such 
lakes are known for their low phosphorus retention (Brett and Benjamin 2008; Kõiv 
et al. 2011). As reported in detail in the eutrophication history in Chap. 5, an inte-
grated lake management plan included external (e.g. completion of remediation 
wells and sewage network for allotment gardens and other arrears in close neigh-
bourhood in 1995) and internal measures (e.g., initial chemical RIPLOX-treatment 

9  Phytoplankton in Alte Donau: Response to Trophic Change from Hypertrophic…

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

https://doi.org/10.1007/978-3-319-93270-5_11
https://doi.org/10.1007/978-3-319-93270-5_8
https://doi.org/10.1007/978-3-319-93270-5_8
https://doi.org/10.1007/978-3-319-93270-5_11
https://doi.org/10.1007/978-3-319-93270-5_11
https://doi.org/10.1007/978-3-319-93270-5_5
https://doi.org/10.1007/978-3-319-93270-5_5
https://doi.org/10.1007/978-3-319-93270-5_6
https://doi.org/10.1007/978-3-319-93270-5_5


128

in 1995 and 1996, Fig. 5.3 in Chap. 5) to reduce phosphorus loading from external 
and internal sources.

According to a multi-lake study by Jeppesen et al. (2005), the internal phospho-
rus load recovery is about 10–15 years when internal abiotic and biotic lake pro-
cesses are shifting towards an efficient phosphorus cycling system and at the same 
time are diminishing the phosphorus availability for phytoplankton growth. The 
phytoplankton composition analysed from another long-term multi-lake recovery 
survey shifted after 15 years from an assemblage mirroring a phosphorus enriched 
environment to an assemblage occurring in an environment of low phosphorus pool 
(Anneville et al. 2005). Although the phosphorus pool has already decreased the 
phytoplankton yield response is often delayed by a few years during internal lake 
recovery (Dokulil and Teubner 2005, see also hysteresis in Fig. 20.4 in Chap. 20).

In Alte Donau, mainly two in-lake treatment measures, the chemical phosphorus 
flocculation associated with nitrate oxidation of the sediment by RIPLOX-treatment 
(RIPLOX-scheme see Fig. 5.3 in Chap. 5, sediment analysis in Chap. 7) and the re-
establishment of the reed-belt and submerged vegetation (Chaps. 8 and 18), were 
aimed at accelerating the internal load recovery in Alte Donau, which shifted this 
urban lake from a hypertrophic state in year 1994 to a moderately eutrophic state in 
years 1995/96, and to a mesotrophic state in year 2000 (total phosphorus loading as 
function of the hydraulic load see Fig. 1.1 in Chap. 1). After this five-year in-lake 
management (1995–1999), the lake remained mesotrophic and reached even lower 
levels of moderate mesotrophic conditions.

Triggered by chemical phosphorus precipitation, the total phosphorus concentra-
tion of about 70  μg  L−1 (2.37  μmol  L−1) before the restoration (hypertrophic) 
decreased to about 30 μg L−1 (0.89 μmol L−1) in 1995 and 20 μg L−1 (0.6 μmol L−1) 
in 1996 (moderately eutrophic). Forced by this drastic decline of TP, the planktonic 
community adjusted promptly to efficiently utilising the remaining phosphorus 
sources. According to an earlier study by Teubner et al. (2003b) for the years 1994–
1996, planktonic biota acted as a sink for phosphorus at lowered TP pool in two 
ways: a) with the tighter coupling between planktonic food and consumer organ-
isms, a larger portion of phosphorus was bound by biota at the expense of the dis-
solved P-fractions, and b) with the compositional shifts from an N-rich towards a 
P-rich biota when assessing stoichiometry of plankton community (Teubner et al. 
2003b). The zooplankton to phytoplankton ratio markedly increased after the 
RIPLOX treatment and stands for a close coupling of zooplankton and their food 
(Fig. 11.6 in Chap. 11, see also Teubner et al. 2003b). The increase of this ratio was 
mainly due to the low biovolume of phytoplankton under P-limited conditions as 
many short-lived primary producers often respond promptly to drastic nutrient 
reduction (e.g., Jeppesen et al. 2000; Ibelings et al. 2007). Such an increase of zoo-
plankton relative to phytoplankton is commonly observed in lakes or particular lake 
sites at declining nutrient levels (e.g., Padisák 1993; Teubner et al. 2003b, Jeppesen 
et al. 2000, 2005; Moustaka-Gouni et al. 2006; Wu et al. 2007; He et al. 2017).

A spontaneous growth of submerged macrophytes was stimulated by enhanced 
light availability at low phytoplankton yield after past RIPLOX treatment (see time 
series of phytoplankton and macrophyte yield in Fig. 20.2 in Chap. 20). In addition, 
the successful re-planting of the reed belt and submerged macrophytes (Chaps. 8 
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and 18) contributed further to reduce the phosphorus availability for phytoplankton 
growth from year 2000 onwards. According to the monograph on Alte Donau 
1986/87 by Löffler (ed, 1988), the TP plant tissue content varied between sub-
merged species and sampling sites and ranged for individual measurements from 
0.52 to 3.6 mg FW g−1 (mean values: 1.54 mg FW g−1 for Myriophyllum spicatum, 
1.51 mg FW g−1 for species of Characeae). The long stems of M. spicatum, that are 
close to the water surface, are removed by moving which is necessary in some rec-
reational areas used for swimming and boating. Mowing thus further contributes to 
some extent to eliminate phosphorus from Alte Donau. The impact of accidentally 
removing fish through mowing is described in Chap. 15. In a longer perspective, the 
aim is to further increase the standing crop of macrophytes while successively 
replacing tall-growing macrophyte species (e.g. Myriophyllum, Figs. 11.8 and 8.8, 
plant biomass in Fig. 8.10) by short-growing macrophytes inhabiting deeper layers 
(species of Characeae, Fig. 8.8) (see Chaps. 8, 18 and 20). The recovery of macro-
phytes, whether by exclosures or cage planting or by whole-lake stimulated growth 
due increased underwater light availability forced by biomanipulation, is seen as a 
successful restoration tool in addition to or instead of common fish manipulation for 
stabilising a high water quality in shallow to deep lakes (e.g., Ozimek et al. 1990; 
Jeppesen et al. 2000; Qiu et al. 2001; Ibelings et al. 2007; Hilt et al. 2010; Wu et al. 
2014; Phillips et al. 2016). Beside the discussed two main in-lake management mea-
sures, the more balanced water fluctuation and the longer retention time (methods, 
see also Chaps. 2, 3, 5 and 6) might have contributed to stabilizing the low phospho-
rus availability and subsequently the successful re-establishment of macrophytes in 
recent years. The persistence of mesotrophic conditions for the 15 recent years of 
our long-term study Alte Donau stands for the sustained shifting towards a healthy 
ecosystem (Costanza and Mageau 1999; Dokulil and Teubner 2010).

The dimensionality of ecosystem response is often reduced to the relationship 
between phytoplankton yield and concentration of the total pool of phosphorus, the 
most limiting nutrient element in freshwaters. This relationship is commonly used 
to develop a trophic classification scheme for identifying the overall success of res-
toration measures or the trophic state in lakes (e.g., Vollenweider 1968; Carlson 
1977; Forsberg and Ryding 1980; McCauley et al. 1989; Reynolds 1992; Watson 
et al. 1992; Teubner and Dokulil 2002; Dokulil and Teubner 2003; Lepistö et al. 
2006; Søndergaard et al. 2011; Qin et al. 2013). TP vs Chl-a graphs are also shown 
in other chapters to introduce (Chap. 1) or summarize the main idea of restoration 
(Chap. 20) in Alte Donau although data were treated differently than in this phyto-
plankton chapter (see methods). According to our analysis, the relationship between 
phytoplankton chl-a or phytoplankton biovolume versus TP roughly provides the 
same main picture of ecosystem shift from a hypertrophic state in 1993 to a meso-
trophic state in 2014. Taking into account the high variability of chl-a content in 
phytoplankton biomass, it might be a rather counterintuitive result that both the 
chl-a:TP relationship (p < 0.01) and biovolume:TP relationship (p < 0.05) are statis-
tically significant when analysing the empirical data on a double logarithmic scale. 
Chl-a is a ubiquitous photosynthetic pigment occurring in phytoplankton of all tax-
onomic affiliations (e.g., Tolstoy 1979; Bricaud et al. 1995; Richardson et al. 1983; 
Donabaum 1992) and is thus used as a proxy for phytoplankton yield. The median 
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of chl-a wet weight phytoplankton biomass for the whole data record in Alte Donau 
confirms the average chlorophyll content of 0.50% wet weight phytoplankton bio-
mass reported for a large data set across trophic gradient by Kasprzak et al. (2008) 
and a large number of cultures including cyanobacteria and eukaryotic taxa (chloro-
phytes, cryptophytes, bacillariophytes and ochrophytes) by Donabaum (1992). 
Fluctuations in the chl-a content per biomass or biovolume occur along different 
time scales of acclimation and adaptation (Geider and MacIntyre 2002). 
Photoacclimation often results in a relative increase of chl-a yield per cell or per 
carbon (also measured by an increase of both the size and number of photosynthetic 
units) for algae that are adjusted to a low light environment while light saturation 
commonly leads to the opposite (e.g., Geider et al. 1997; Felip and Catalan 2000; 
Teubner et al. 2001; Schagerl and Müller 2006; Grant and Louda 2010; McKew 
et al. 2013). Furthermore, chl-a content and light absorption by chl-a increase in 
response to fluctuating light when compared with constant light (e.g. for cyanobac-
teria see Nicklisch 1998; Nicklisch and Fietz 2001; Shatwell et al. 2012). According 
to allometric rules, the cellular chl-a content per biomass is relatively high for small 
cell dominated assemblages compared to large cells (e.g., Richardson et al. 1983; 
Bricaud et  al. 1995; Vörös and Padisák 1991; Kalchev et  al. 1996; Woitke et  al. 
1996; Felip and Catalan 2000; Teubner et al. 2001). The impact of adaptation is 
most relevant when species composition changes as the chl-a content per phyto-
plankton biomass depends on the photosynthetic apparatus that is different among 
taxa of various affiliations. The elevated chl-a content during periods of relative 
high contribution of chlorophytes (0.83% wet weight phytoplankton biomass) in 
Alte Donau relies on the especially high contribution of this photosynthetic pigment 
in chlorophyte species (e.g., Donabaum 1992; Greisberger and Teubner 2007). In 
turn, cyanobacteria with photosynthetic phycobilines, which are contributing to 
light harvesting in addition to chl-a, are well known to rely on low chl-a content per 
biomass or biovolume yield (Feuillade and Davies 1994; Donabaum 1992; Schagerl 
and Müller 2006; Schagerl and Donabaum 2003; Greisberger and Teubner 2007), 
which thus corresponds to lowest chl-a content (0.19% wet weight phytoplankton 
biomass) during cyanobacterial blooms in Alte Donau (time series of chl-a content 
per wet weight of phytoplankton see also Dokulil et al. 2007). In this view, biomass 
phytoplankton yields that are composed of large-celled cyanobacteria and exposed 
to saturating light conditions might tend to be underestimated by chl-a measure-
ments. Likewise, the biomass yield of small-sized chlorophytes inhabiting depth 
layers of low light availability might usually be over estimated by chl-a. Facing the 
different time scales effecting alterations of chl-a (Geider and MacIntyre 2002), 
namely rather short-term acclimation due to an adjustment within minutes to hours 
lasting for hours to days or long-term adaptation by species shift due to growth 
within larger time-sales from 1 day to weeks, a change of chl-a might not be neces-
sarily linked to biovolume increase of phytoplankton. Felip and Catalan (2000) 
describe the decoupling between the peak chl-a concentration and the peak biovol-
ume during seasonal succession of phytoplankton. When plotting the compositional 
shift between phytoplankton species (e.g. expressed by a similarity index as shown 
in Fig. 9.4b) versus the net growth of chl-a (see Fig. 9.4a), the data points follow a 
dome-shaped frequency distribution. The common pattern is that the high persis-
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tence of species in planktonic assemblages is related to almost zero net changes of 
biomass yield, while pronounced changes in species composition are associated 
with high values of positive or negative net growth rates (see Fig. 7 in Teubner et al. 
2003b, Fig. 2d in Sonntag et al. 2006, the same is valid for Alte Donau but is not 
graphically shown). Furthermore, highest stability of phytoplankton species com-
position is often associated with chl-a net change rates ranging between zero and 
slightly positive values and thus indicate that small growth success best secure the 
stability of species composition (multi-lake study by Teubner, unpublished). Both 
examples illustrate that chl-a and phytoplankton biovolume emphasize different 
aspects of organism behavior. While the yield of biomass or biovolume stands for 
growth, the chl-a concentration mirrors both the phytoplankton yield and the adjust-
ment of primary producers to their environment via photoacclimation. In this view, 
chl-a might mirror a more complex response of biota adjusting to their environment 
than just phytoplankton biovolume. These arguments are in agreement with our 
empirical results from Alte Donau suggesting that the chl-a vs TP relationship 
seems more robust than biovolume vs TP (see different levels of significance of both 
correlations). This finding might be confirmed by other studies that commonly 
choose phytoplankton chl-a (Vollenweider 1968; Carlson 1977; Forsberg and 
Ryding 1980; McCauley et al. 1989; Reynolds 1992; Watson et al. 1992; Teubner 
and Dokulil 2002; Chen et al. 2003; Dokulil and Teubner 2003; Lepistö et al. 2006; 
Søndergaard et  al. 2011; Qin et  al. 2013) over phytoplankton biovolume (e.g. 
Dokulil and Teubner 2005) for the response variable to the total phosphorus pool. 
Many studies emphasize the logistic shape of the Chl-a to TP relationship (e.g., 
McCauley et al. 1989; Watson et al. 1992; Dokulil and Teubner 2003; Donabaum 
et al. 2004). This sigmoid curve is mirroring an exponential growth at low TP con-
centrations but saturates at high TP. The latter is often discussed in view of a co-
limitation, i.e. that an environmental stimulus other than phosphorus such as light or 
further macronutrient elements (nitrogen and silica) are not sufficiently available 
for enabling further growth at relatively high TP levels (e.g., Vollenweider 1968; 
Forsberg and Ryding 1980; McCauley et al. 1989; Teubner and Dokulil 2002). In 
case of Alte Donau, the log-log-transformed Chl-a:TP or biovolume:TP relationship 
does not follow the shape of a sigmoid curve and is thus different from multi-lake 
studies covering a much wider range of trophic levels (McCauley et  al. 1989; 
Watson et al. 1992; Dokulil and Teubner 2003).

9.5  �Conclusions

The main compositional shift from cyanobacterial dominance under hypertrophic 
conditions to a balanced mixture of cyanobacteria, diatoms, green algae, golden 
algae and cryptophytes under mesotrophic conditions seems to be mainly driven by 
bottom-up control (see integrated lake management plan including external and and 
internal measures; Chaps. 5, 8 and 18, 19, 20). The drastic decline in phytoplankton 
yield responded to a sustainable reduction of the total phosphorus pool stimulated 
by (1) the initial phosphorus precipitation in association with sediment oxidation by 
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RIPLOX-treatment and (2) the persistent low phosphorus availability in subsequent 
years due to the successful re-establishment of underwater vegetation. The hyper-
trophic situation in 1994 was characterised by 35 μg L−1 mean phytoplankton chl-a 
in summer, 63 μg L−1 annual mean for TP, 0.85 m annual mean for Secchi depth 
(0.69 m summer Secchi depth), about 3  t dry weight of submerged macrophytes 
(Fig. 8.1 in Chap. 8), 6157 kg total fish stocking (40% predatory fish) and 5599 kg 
total fish catch (37% predatory fish, fish data see further Chap. 15). The period of 
sustained lake management is mirrored by the stabilised situation during the last 
8  years of observation (2007–2014) with 5  μg  L−1 mean phytoplankton chl-a in 
summer, 10 μg L−1annual mean for TP, 3.7 m annual mean Secchi depth (3.0 m 
mean summer Secchi depth), about 365 t annual dry weight of submerged macro-
phytes (Fig. 8.11 in Chap. 8), 4347 kg annual fish stocking (21% predatory fish) and 
4314 kg annual fish catch (31% predatory fish, fish data see further Chap. 15 and 
Fig. 20.7 in Chap. 20). The control of phytoplankton yields effected biota from 
bacteria to macrozoobenthos as described in other chapters of this book. The sup-
pression of filter-feeding herbivorous cladocerans after reduced algal food supply 
and the dominance of mainly selective-feeding omnivorous and herbivorous cope-
pods, which survived under mesotrophic transparent-water conditions, is one exam-
ple of how strongly declined phytoplankton yields impacted planktonic assemblage 
(Chap. 11). Different from many other lake restoration projects described in litera-
ture, fish was not removed as cyprinid-fishing is most popular in this urban lake. 
Alte Donau thus provides an example of successful and sustained lake restoration 
mainly accomplished by bottom up (resource-driven) control rather than by top 
down (consumer-driven) control.
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